Outline - 1. Introduction to SCL - 2. Brief Summary of the Service - 3. Highlights of ISO 10360-5:2020 Updates - 4. Verification - Preparation Steps - Scanning Path - 5. Results analysis and CMC - Verification of CMM generated results - Measurement Capability - Future Development ## 1. Standards and Calibration Laboratory (SCL) Mutual Recognition Arrangement - SCL is a Signatory to the Mutual Recognition Arrangement of the International Committee of Weights and Measures (CIPM MRA) - Through the CIPM MRA, SCL demonstrates the international equivalence of its measurement standards and mutual acceptance of the calibration and measurement certificates they issue. [97 NMIs] - Over 190 Calibration and Measurement Capabilities (CMC) of SCL are listed at the CIPM MRA database. | Metrology Field | CMC | |-----------------------------|-----| | Acoustics | 15 | | Electricity | 66 | | Length | 15 | | Mass and Related quantities | 34 | | Thermometry | 34 | | Time and Frequency | 29 | | Total | 193 | #### 2. Brief Summary of the Service # 2. CMM Scanning Mode Verification i.a.w. ISO 10360-5:2020 ### 2. The problems - (i) data and (ii) evaluation were genuinely generated with (iii) the required setting following the ISO standard strictly? - Service covering all brands of CMM ## 3. Highlights of ISO 10360-5:2020 Updates #### 3. ISO-10360-5:2020 Update #### - Parameter formatting - P_{THP} -> P_{form.Sph.Scan:PP:Tact} (F: form , Sph: sphere, PP: pre-defined path, T:tactile) - MPE_{THP}-> P_{form.Sph.Scan:PP:Tact,MPE} (MPE: maximum permissible error) - τ -> τ _{Sph.Scan:PP:Tact} (τ : time taken) #### Rated operating condition - MPT_{τ} -> τ _{Sph.Scan:PP:Tact,MPT} (MPT: maximum permissible time) - Unless manufacturer stated explicitly otherwise, test sphere shall meet all the following requirements for all of the associated MPEs ``` F_{Cal} \le 20 \% \text{ of } P_{form.Sph.1x25:SS:Tact,MPE} (SS: single stylus) ``` $$F_{Cal}$$ + 1.65 $u(_{Cal})$ <= 25 % of $P_{form.Sph.1x25:SS:Tact,MPE}$ $$F_{Cal} + 1.65 u(_{Cal}) <= 2.5 \mu m$$ Then the test sphere's sphericity is treated as zero in the evaluation of probing errors in this ISO. - Sphere diameter of 24.9 mm 25.5 mm shall be used - Presentation using "2D simplified illustration" #### 3. 2D simplified illustration #### 4. Verification ### 4. Preparation meeting with clients - Explain the verification procedure of the standard (ISO 10360-5:2020). - Pass the 3D printed 25 mm diameter dummy sphere for programme trial. - (After the meeting) Client sends the programme to SCL in pdf or txt format for SCL to review - If necessary, SCL asks the customer to demonstrate the scanning on-site or by video recording. #### 4. Scanning Program Description - Plane A is equator - Plane B is parallel to Plane A & 8 mm apart - Planes B, C & D are mutually perpendicular - Plane C goes through the pole - Plane D is 8 mm offset from pole axis #### 4. Scanning Program Description ### 4. Scanning Program Description - 1. Rotate the probe -45° along y-axis. - 2. Create a new coordinate by rotating the coordinate 45° along y-axis. Use this new coordinate. - 3. Move the probe to (22.5, 0, 0). - 4. Move the probe onto path A and scan through path A. (Note: timer starts at this step. The probe should approach the sphere along a surface normal i.e. direction vector shall always point at the center of the sphere. This can take advantage on some existing programme of the CMM such as scanning sphere or cylinder.) - 5. Move the probe back to (22.5, 0, 0). - 6. Move the probe to (17.2884, 0, 14.4). - 7. Move the probe onto path B and scan through path B. - 8. Move the probe to (17.2884, 0, 14.4). - 9. Move the probe to (22.5, 0, 0) - 10. Move the probe onto path C and scan through path C. - 11. Move the probe to (-22.5, 0, 0) - 12. Move the probe to (-14.4, -17.2884, 0). (Check if this travel touches the sphere. Add intermediate step if required.) - 13. Move the probe onto path D and scan through path D. - 14. Move the probe to (-14.4, 17.2884, 0). Timer stops after this step completes. #### 5. Results Analysis & CMC #### 5. Excel calculator - Number of data points - Point density ≤ 0.1 mm - Max normal distance from plane = 0.2 mm - Theoretical number of points = 2081 #### 5. Excel calculator | | 28/4/2022 | | | | | | | | | | | | | | | | | |--|---|--|--|--|---|--|--|--|--|--|---|-------------|-------------------------|-------------------|-------------|--|----------------------------| | Input data | 230V 50Hz | 19.8 °C 55.5 %F | H 994.7 hPa | Testing criteria | | | | | | Compliance | 7 | | | | | | Test sphere diameter | r | | -Dcal | 25.00007 | mm | PSize.Sph.Scan | PP:Tact | | | | 0.8 µm | a) | YES | -0.2919 | 0 | | | | a) Scanning probing | error, T _l | | -Rmax - Rmin | 1.34728 | Дee | PForm.Sph.Scar | r:PP:Tact | | | | 1.6 µm | b) | YES | 1.3473 | 3 | | | | b) Max absolute diffe | erence between an | y individual calcu | lated radius | 0.866709565 | μе | τ Sph.Scan:PP: | Tact | | | | 45 s | c) | YES | | | | | | c) time taken for scar | nning test | | - τ | 45 | s | | | for p | lotting | | | | | | | | | | Co-ordinate -> | X _i (mm) | Y _i (mm) | Z(mm) | D (for D) | X2+Y2+Z2 | R _i (mm) | Roal | Rmea | Rmax | Rmin | R-R (mm) | Coefficient | Fitted Coef | Fitted sd | Sensit Coef | (a*b)2 | | | 1 | 12,5000 | -0.0002 | 0.0006 | 1.0000 | 156.25075 | 12.49985 | 12.50004 | 12.49989 | 12.50052 | 12,49917 | -0.00004 | A | 0.0004 | 0.00002 | 0.0000 | 1.2344E-20 | 1 | | 2 | 12.4996 | 0.0980 | 0.0025 | 1.0000 | 156.25030 | 12.49983 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00006 | В | -0.0002 | 0.00002 | 0.0000 | 4.7385E-21 | 1 | | 3 | 12.4984 | 0.1961 | 0.0034 | 1.0000 | 156.24969 | 12.49980 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00008 | С | 0.0004 | 0.00003 | 0.0000 | 4.6731E-20 | 1 | | 4 | 12.4965 | 0.2943 | 0.0034 | 1.0000 | 156.24891 | 12.49977 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00011 | D | 156.2472 | 0.00018 | 0.0400 | 5.4019E-11 | 1 | | 5 | 12.4938 | 0.3924 | 0.0028 | 1.0000 | 156.24871 | 12.49977 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00012 | R2 => | 1.000000 | | | | | | 6 | 12.4903 | 0.4905 | 0.0020 | 1.0000 | 156.24860 | 12.49976 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00013 | sd => | 0.0056 | | | | | | 7 | 12.4861 | 0.5886 | 0.0015 | 1.0000 | 156.24855 | 12.49976 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00013 | df => | 2175 | | | | | | 8 | 12.4811 | 0.6867 | 0.0013 | 1.0000 | 156.24832 | 12.49975 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00014 | | | | | | | | 9 | 12.4753 | 0.7847 | 0.0018 | 1.0000 | 156.24839 | 12.49976 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00013 | | | | | | | | 10 | 12.4687 | 0.8826 | 0.0029 | 1.0000 | 156.24852 | 12.49976 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00013 | | Center at => | 0.0002 | -0.0001 | 0.0002 | | | 11 | 12.4614 | 0.9805 | 0.0045 | 1.0000 | 156.24894 | 12.49978 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00011 | | Radius (mm) -> | 12.4 | 499889 | | 24.9 | | 12 | 12.4534 | 1.0784 | 0.0059 | 1.0000 | 156.24941 | 12.49980 | 12,50004 | 12.49989 | 12.50052 | | -0.00009 | | | | 00135 | | 24.3 | | | | | | | | | | | | 12.49917 | | | Form error (mm) -> | | .0000 | | + | | 13 | 12.4445 | 1.1762 | 0.0065 | 1.0000 | 156.24986 | 12.49982 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00007 | | Ucty (mm) -> | U | .0000 | | _ | | 14 | 12,4349 | 1.2739 | 0.0060 | 1.0000 | 156.25003 | 12.49983 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00006 | | | | | | - | | 15 | 12.4245 | 1.3715 | 0.0047 | 1.0000 | 156.24994 | 12.49982 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00006
-0.00007 | | ISO 10 | 360 probing error | | | | | 16
17 | 12.4134
12.4015 | 1.4690
1.5665 | 0.0031 | 1.0000 | 156.24979 | 12.49982 | 12,50004 | 12.49989 | 12.50052 | 12.49917 | | | 130 10 | 300 probing error | | | | | 18 | 12.4015 | 1.6638 | 0.0014 | 1.0000 | 156.24984
156.24985 | 12.49982
12.49982 | 12.50004
12.50004 | 12.49989
12.49989 | 12.50052
12.50052 | 12.49917
12.49917 | -0.00007
-0.00007 | | | | | | | | 19 | 12.3000 | 1.7611 | -0.0002 | 1.0000 | 156.24973 | 12.49982 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00007 | | | | | | | | 20 | 12.3611 | 1.8582 | 0.0003 | 1.0000 | 156.24996 | 12.49983 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00007 | | | | | | | | 21 | | | 0.0002 | | 156.25085 | 12.49987 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | -0.00002 | | / | | | | | | | 10.2460 | 1.0550 | 0.0019 | | | | | | | | | | | | | | | | | 12.3462 | 1.9552 | 0.0018 | 1.0000 | | | | | | | | | / / / / / / / / / / / / | | | | | | 22 | 12.3305 | 2.0522 | 0.0038 | 1.0000 | 156.25181 | 12.49991 | 12.50004 | 12.49989 | 12.50052 | 12.49917 | 0.00002 | | | The Maria | | | | | 22
23 | 12.3305
12.3140 | 2.0522
2.1489 | 0.0038
0.0053 | 1.0000
1.0000 | 156.25181
156.25282 | 12.49991
12.49995 | 12.50004
12.50004 | 12.49989
12.49989 | 12.50052
12.50052 | 12.49917
12.49917 | 0.00002
0.00006 | | T/2 | | | | | | 22
23
24 | 12.3305
12.3140
12.2968 | 2.0522
2.1489
2.2456 | 0.0038
0.0053
0.0060 | 1.0000
1.0000
1.0000 | 156.25181
156.25282
156.25359 | 12.49991
12.49995
12.49998 | 12.50004
12.50004
12.50004 | 12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009 | | 3/100 | | \ | | | | 22
23
24
25 | 12.3305
12.3140
12.2968
12.2788 | 2.0522
2.1489
2.2456
2.3421 | 0.0038
0.0053
0.0060
0.0058 | 1.0000
1.0000
1.0000
1.0000 | 156.25181
156.25282
156.25359
156.25354 | 12.49991
12.49995
12.49998
12.49998 | 12.50004
12.50004
12.50004
12.50004 | 12.49989
12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009 | ı | TO THE REAL PROPERTY. | | \ | | | | 22
23
24
25
26 | 12.3305
12.3140
12.2968
12.2788
12.2599 | 2.0522
2.1489
2.2456
2.3421
2.4385 | 0.0038
0.0053
0.0060
0.0058
0.0049 | 1.0000
1.0000
1.0000
1.0000
1.0000 | 156.25181
156.25282
156.25359
156.25354
156.25246 | 12.49991
12.49995
12.49998
12.49998
12.49994 | 12,50004
12,50004
12,50004
12,50004
12,50004 | 12.49989
12.49989
12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005 | I | | | .\ | | | | 22
23
24
25
26
27 | 12.3305
12.3140
12.2968
12.2788
12.2599
12.2404 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037 | 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000 | 156.25181
156.25282
156.25359
156.25354
156.25246
156.25080 | 12.49991
12.49995
12.49998
12.49998
12.49994
12.49987 | 12,50004
12,50004
12,50004
12,50004
12,50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00002 | 1 | 1 Park | | | | | | 22
23
24
25
26
27
28 | 12.3305
12.3140
12.2968
12.2788
12.2599
12.2404
12.2200 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.6307 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037
0.0024 | 1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000 | 156.25181
156.25282
156.25359
156.25354
156.25246
156.25080
156.24873 | 12.49991
12.49995
12.49998
12.49998
12.49994
12.49987
12.49979 | 12.50004
12.50004
12.50004
12.50004
12.50004
12.50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00002
-0.00010 | (| | | | | | | 22
23
24
25
26
27
28
29 | 12.3905
12.3140
12.2968
12.2788
12.2599
12.2404
12.2200
12.1989 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.6307
2.7266 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037
0.0024
0.0017 | 1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000 | 156.25181
156.25282
156.25359
156.25354
156.25246
156.25080
156.24873
156.24652 | 12.49991
12.49995
12.49998
12.49998
12.49994
12.49987
12.49979
12.49970 | 12.50004
12.50004
12.50004
12.50004
12.50004
12.50004
12.50004 | 12,49989
12,49989
12,49989
12,49989
12,49989
12,49989
12,49989
12,49989 | 12.50052
12.50052
12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00002
-0.00010
-0.00019 | (| | | | | | | 22
23
24
25
26
27
28
29
30 | 12.3905
12.3140
12.2968
12.2788
12.2599
12.2404
12.2200
12.1989
12.1770 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.6307
2.7266
2.8223 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037
0.0024 | 1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000 | 156.25181
156.25282
156.25359
156.25354
156.25246
156.25080
156.24873 | 12.49991
12.49995
12.49998
12.49998
12.49994
12.49997
12.49979
12.49970
12.49970 | 12.50004
12.50004
12.50004
12.50004
12.50004
12.50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00002
-0.00010 | (| | | | | | | 22
23
24
25
26
27
28
29 | 12.3905
12.3140
12.2968
12.2788
12.2599
12.2404
12.2200
12.1989 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.6307
2.7266 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037
0.0024
0.0017 | 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000 | 156.25181
156.25282
156.25359
156.25354
156.25246
156.25246
156.24573
156.24652
156.24652 | 12.49991
12.49995
12.49998
12.49998
12.49994
12.49987
12.49979
12.49970 | 12.50004
12.50004
12.50004
12.50004
12.50004
12.50004
12.50004
12.50004 | 12,49989
12,49989
12,49989
12,49989
12,49989
12,49989
12,49989
12,49989
12,49989 | 12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00002
-0.00010
-0.00019 | (| | | | measured point | rts | | 22
23
24
25
26
27
28
29
30
31 | 12.3905
12.3140
12.2968
12.2788
12.2599
12.2404
12.2000
12.1989
12.1770
12.1544 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.6307
2.7266
2.8223
2.9178 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037
0.0024
0.0017
0.0017 | 1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000 | 156.25181
156.25282
156.25359
156.25354
156.25246
156.25080
156.24873
156.24652
156.24468
156.24358 | 12.49991
12.49995
12.49998
12.49998
12.49994
12.49987
12.49979
12.49970
12.49970
12.49963
12.49959 | 12.50004
12.50004
12.50004
12.50004
12.50004
12.50004
12.50004
12.50004
12.50004
12.50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00002
-0.00010
-0.00019
-0.00026
-0.00030 | (| | | | | | | 22
23
24
25
25
26
27
28
29
30
31
32 | 12.3905
12.3140
12.2968
12.2788
12.2799
12.2404
12.2200
12.1989
12.1770
12.1544
12.1311 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.6307
2.7266
2.8223
2.9178
3.0132 | 0.0038
0.0053
0.0060
0.0038
0.0049
0.0037
0.0024
0.0017
0.0017
0.0025
0.0036 | 1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000 | 156.25181
156.25382
156.25359
156.25354
156.25246
156.25246
156.24873
156.24873
156.24468
156.24358
156.24358
156.24302
156.24302 | 12.49991
12.49995
12.49998
12.49998
12.49994
12.49987
12.49970
12.49970
12.49963
12.49959
12.49957 | 12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052
12.50052 | 12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917 | 0.00002
0.00006
0.00009
0.00009
0.00002
-0.00010
-0.00019
-0.00026
-0.00030
-0.00030 | | | | ·) | measured point extreme point a | definin | | 22
23
24
25
26
27
28
29
30
31
32
33 | 12.3305
12.3140
12.2958
12.2758
12.2759
12.2404
12.2200
12.1959
12.1770
12.1544
12.1311 | 2.0522
2.1489
2.2436
2.3421
2.4385
2.5347
2.6307
2.7266
2.8223
2.9178
3.0152 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037
0.0024
0.0017
0.0017
0.0025
0.0036 | 1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000 | 156.25181
156.25282
156.25359
156.25354
156.25364
156.25080
156.24873
156.24873
156.24458
156.24458
156.24308 | 12,49991
12,49995
12,49998
12,49998
12,49994
12,49979
12,49970
12,49970
12,49963
12,49959
12,49957
12,49957 | 12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12 50052
12 50052 | 12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917
12,49917 | 0.0002
0.00006
0.00009
0.00009
0.00005
-0.00002
-0.00010
-0.00019
-0.00026
-0.00032
-0.00032 | (| | | _ | extreme point of | definin
us | | 22
23
24
25
26
27
28
29
30
31
32
33
34 | 12.3905
12.3140
12.2468
12.2788
12.2789
12.2404
12.2200
12.1989
12.1770
12.1544
12.1311
12.1071
12.0823 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.7266
2.8223
2.9178
3.0132
3.1084
3.2034 | 0.0038
0.0053
0.0060
0.0058
0.0049
0.0037
0.0024
0.0017
0.0025
0.0036
0.0043 | 1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000
1,0000 | 156.25181
156.25282
156.25354
156.25354
156.25346
156.25346
156.24873
156.24873
156.24862
156.24308
156.24308
156.24302
156.24308
156.24302
156.24309 | 12,49991
12,49995
12,49998
12,49998
12,49994
12,49979
12,49979
12,49979
12,49979
12,49979
12,49977
12,49957
12,49957
12,49957 | 12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00002
-0.00010
-0.00019
-0.00032
-0.00032
-0.00032
-0.00032 | (| | | | extreme point of
maximum radiu
extreme point of
minimum radiu | defining
us
defining | | 22
23
24
25
26
27
28
29
30
31
32
33
34
35 | 12.3905
12.3140
12.2988
12.2788
12.2399
12.2490
12.1770
12.1544
12.1311
12.1071
12.0823
12.0568 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.7266
2.8223
2.9178
3.0152
3.1084
3.2034
3.2034 | 0.0038
0.0053
0.0060
0.0038
0.0049
0.0037
0.0017
0.0017
0.0025
0.0036
0.0043
0.0041 | 1,0000 | 156.25181
156.25282
156.25359
156.25354
156.25354
156.25246
156.25246
156.24652
156.24652
156.24658
156.24358
156.24355
156.24355
156.24355
156.24355 | 12.49991
12.49998
12.49998
12.49998
12.49998
12.49997
12.49970
12.49970
12.49970
12.49957
12.49957
12.49959
12.49957
12.49959 | 12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12 50052
12 50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00005
-0.00002
-0.00019
-0.00019
-0.00032
-0.00032
-0.00032
-0.00032 | | | | | extreme point of maximum radiu | defining
us
defining | | 22
23
24
25
26
27
28
29
30
31
31
32
33
34
35
36 | 12.3905
12.3140
12.2968
12.2788
12.2899
12.2404
12.2200
12.1989
12.1770
12.1544
12.1311
12.0723
12.0828
12.0828
12.0305 | 2.0522
2.1489
2.2456
2.3421
2.4385
2.5347
2.6307
2.7266
2.8223
2.9178
3.0132
3.1084
3.2034
3.2932
3.3928 | 0.0038
0.0030
0.0060
0.0058
0.0049
0.0037
0.0024
0.0017
0.0025
0.0036
0.0043
0.0041
0.0032 | 1,0000 | 156.25181
156.25282
156.25354
156.25354
156.25354
156.25245
156.25245
156.24552
156.24552
156.24552
156.24355
156.24355
156.24355
156.24355
156.24355 | 12.49991
12.49998
12.49998
12.49998
12.49994
12.49997
12.49970
12.49970
12.49970
12.49957
12.49957
12.49957
12.49957
12.49957
12.49957 | 12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004
12,50004 | 12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989
12.49989 | 12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052
12,50052 | 12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917
12.49917 | 0.00002
0.00006
0.00009
0.00009
0.00005
-0.00010
-0.00019
-0.00019
-0.00032
-0.00032
-0.00032
-0.00032
-0.00032
-0.00032
-0.00032 | (| | |
 | extreme point of
maximum radiu
extreme point of
minimum radiu | defining
us
defining | ### 5. Results & Reporting Format | | Value
y
(μm) | Measuremen | | | |--------------------------------------|--------------------|--------------------------------------|----------------------|-------------| | Measured
Parameter | | Expanded
Uncertainty
U
(µm) | Coverage Factor
k | MPE
(μm) | | P _{Size.Sph.Scan:PP:Tact} * | -0.29
μm | 0.15 | 2 | 0.80 μm | | P _{Form.Sph.Scan:PP:Tact} | 1.3 μm | N/A# | N/A# | 1.6 μm | | τ _{Sph.Scan:PP:Tact} | 45 s | N/A | N/A | 45 s | ### 5. Measurement Capability - $P_{Size.Sph.Scan:PP:Tact} = 0.8 \mu m$ - $P_{Form.Sph.Scan:PP:Tact} = 1.6 \mu m$ #### 5. Future Development - Articulated Arm CMM (AACMM) verification - AACMM Laser Scanner verification - CMM verification using laser tracer