

Development and testing of OPTIMUM

Richard James – Technical Fellow (Metrologist) - AMRC James Blanchard – Higher Research Scientist - NPL

Aachen 2022

16/11/2022

Questions from end-users

- How good is my instrument?
- How can I be sure my calibration is still valid?
- What's my measurement uncertainty?

Objective is to make a CMS that is:

- As accurate as the state-of-the-art
- Measures multiple points simultaneously
- Inherent Self-calibrating able to compensation for systematic errors
- Has built-in **traceability** to SI metre
- Gives on-line uncertainty estimation
- Operating volume 10 m x 10 m x 5 m

OPTIMUM

OPtical **T**racking **I**nstrument for **M**easurement **U**sing **M**ultilateration

MULTILATERATION is the process of determining locations of points by measurement of distances using the geometry of circles or spheres.

X

Coordinates are computed by fitting a mathematical geometric model to the observed distance measurements. Simultaneously, uncertainty contributions are propagated along with noise and other disturbances through a stochastic model to estimate coordinate uncertainties.

FREQUENCY SCANNING INETERFEROMETRY (FSI) can measure distances to multiple targets simultaneously with inherent traceability via a gas absorption cell and the defined speed of light, c.

FSI signal (frequency spectrum). Each spike corresponds to a target.

Absorption spectrum of HCN used as a frequency reference.

Comparison with state-of-the-art

	Photogrammetry	GPS	ОРТІМИМ
Basic principle	Triangulation - angles	Multilateration, absolute distance, time-of-flight	Multilateration, absolute distance, frequency scanning interferometry
Volume	$<1 \text{ m}^3 \text{ to} > 10^6 \text{ m}^3$	10 ¹² m ³	or $> 500 \text{ m}^3$
Precision	1:10 ⁵ to 1:10 ⁴ (determined 'real time')	0.3:10 ⁶ (~4 m) (determined 'real time')	<1:10 ⁶ (< 1 μm per m)
Uncertainty	>1:10 ⁵	~1:106	~2-5:10 ⁶ (determined 'real time')
Traceability	Scale bar	On-board atomic clock	Gas absorption cell built-in
Calibration	Self-calibrating e.g. camera pose, optical distortion etc but needs scale information	Receiver clock, real-time	Self-calibrating - sensor pose, optical distortion, scale factor, real-time, all with uncertainties

AMRC Cymru

 Introduced to support the region's manufacturing community access advanced technologies to drive improvements in productivity, performance and quality.

Key themes:

- Automation
- Design for X
- Digitalisation and simulation
- Product and process verification

AIRBUS

Measurement Volume:

- Sensors have 10 metre range (potential to optimise range)
- Volume depends on geometry of setup
- Need to maintain line of sight to at least 3 sensors (4 to calculate uncertainties)
- We currently have constellation of 4 sensors, but our system can be expanded to 8 sensors.
- Simulation of volume configurations
- Able to simulate point/target uncertainty (based on geometry)

Targets:

- Diameter 17mm glass sphere
- Compatible with standard 1.5 inch nest
- High acceptance angle
- Relatively low cost

Accuracy:

- Dependent on setup geometry (sensor positions)
- Plan to use a laser tracker unified spatial metrology network (USMN) to baseline.
- Target tripods to allow measurement throughout volume
- Trials to determine accuracy are ongoing
- O ISO 10360-13:2021 Part 13: Optical 3D CMS

Point uncertainty

Simulation of point uncertainty:

- Based on geometry of sensor network and points
- Able to optimise network prior to measurement

Real time uncertainty:

- Other solutions only provide MPE (maximum permissible error)
- Includes a number of factors:
 - Refractive index, gas cell reference
 - Environment
 - Geometry and systematic errors
 - Vibration
- Allows operators to make informed decisions / set a tolerance on allowable uncertainty.

Ref: NPL

Application

- Aerospace jigs / fixtures
 - Certification
 - Fixture monitoring / digital twin
 - Re-configuring
 - Augmented reality build inspect

Ref: Electroimpact

Ref: Electroimpact

Application

Large machine tool calibration / serial arm robot

Typical array of KR120 TCP targets for measurement

Joints 'Pair Plot' to confirm randomized joint spread

Electroimpact Proprietary

Ref: Electroimpact

Thank you. For further information please contact or visit:

Email: r.james@amrc.co.uk / james.blanchard@npl.co.uk

www.linkedin.com/in/rdjames

Web: www.amrc.co.uk

